首页> 外文OA文献 >Rejection mechanisms for contaminants in polymeric reverse osmosis membranes
【2h】

Rejection mechanisms for contaminants in polymeric reverse osmosis membranes

机译:聚合物反渗透中污染物的排斥机制   膜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite the success of reverse osmosis (RO) for water purification, themolecular-level physico-chemical processes of contaminant rejection are notwell understood. Here we carry out NEMD simulations on a model polyamide ROmembrane to understand the mechanisms of transport and rejection of both ionicand neutral contaminants in water. We observe that the rejection changesnon-monotonously with ion sizes. In particular, the rejection of urea, 2.4 Aradius, is higher than ethanol, 2.6 A radius, and the rejections for organicsolutes, 2.2-2.8 A radius, are lower than Na+, 1.4 A radius, or Cl-, 2.3 Aradius. We show that this can be explained in terms of the solute accessibleintermolecular volume in the membrane and the solute-water pair interactionenergy. If the smallest open spaces in the membrane's molecular structure areall larger than the hydrated solute, then the solute-water pair interactionenergy does not matter. However, when the open spaces in the polymericstructure are such that solutes have to shed at least one water molecule topass through a portion of the membrane molecular structure, the pairinteraction energy governs solute rejection. The high pair interaction energyfor water molecules in the solvation shell for ions makes the water moleculesdifficult to shed, thus enhancing the rejection of ions. On the other hand, theorganic solute-water interaction energies are governed by the water moleculesthat are hydrogen bonded to the solute. Urea molecules have morehydrogen-bonding sites than alcohol molecules, leading to a higher rejection ofurea than occurs for ethanol, a molecule of similar size but with fewerhydrogen bonding sites. These findings underline the importance of the solute'ssolvation shell and solute-water-membrane chemistry in the context of reverseosmosis, thus providing new insights into solute transport and rejection in ROmembranes.
机译:尽管反渗透(RO)可以成功地用于水净化,但对污染物排斥的分子水平理化过程还知之甚少。在这里,我们对聚酰胺RO型膜进行了NEMD模拟,以了解水中离子和中性污染物的迁移和排斥机理。我们观察到排斥率随离子尺寸非单调变化。特别是,尿素的截留率是2.4半径,高于乙醇(半径为2.6 A),有机溶质的截留率(半径是2.2-2.8 A)小于Na +,半径为1.4 A或Cl-,半径为2.3。我们表明,这可以用膜中的溶质可及的分子间体积和溶质-水对相互作用能来解释。如果膜分子结构中最小的开放空间都比水合溶质大,那么溶质与水对的相互作用能就没有关系。然而,当聚合物结构中的开放空间使得溶质必须脱落至少一个水分子以通过一部分膜分子结构时,对相互作用能控制溶质的排斥。溶剂化壳中水分子对离子的高对相互作用能使水分子难以脱落,从而增强了离子的排斥能力。另一方面,有机溶质与水的相互作用能受与溶质氢键合的水分子的控制。尿素分子比乙醇分子具有更多的氢键结合位点,因此尿素的排泄率比乙醇高。乙醇是一种类似分子,但氢键结合位点少。这些发现强调了在反渗透的背景下溶质的溶剂化壳和溶质-水-膜化学的重要性,从而为RO膜中的溶质运输和排斥提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号